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Abstract: In the paper, corporate financial management using statistical process control (SPC), especially She-
whart’s control charts operating with the constant mean, control charts with non-constant mean, and process ca-
pability indices will be introduced. The center line, UCL and LCL for the control charts will be defined with the
regulated process not allowed to cross the UCL and LCL boundaries. Altman’s model (the so called Z-score), the
most popular corporate financial stability index, will be used. We will demonstrate benefits of SPC on two case
studies: the first will focus on corporate financial flow control, the second will include six companies. Special
types of control charts, i.e., CUSUM and EWMA, will be discussed due to their mean shift sensitivity and practi-
cal applications demonstrated on additional two case studies. The results prove control charts can be successfully
implemented not only in manufacturing processes but in corporate financial management as well.

Key–Words: Altman’s Z-score, Statistical Process Control, Shewhart’s control charts, process capability indices,
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1 Introduction

Statistical financial flow management deals with cor-
porate cash flow control. Monitoring cash flow, com-
panies can avoid losses from undelivered goods, bad
financial investments, etc. We have selected Altman’s
model for financial analysis which should be done
once per year. For the purposes of Case Study 1 (sec-
tion 5.1), we will present monthly values for an un-
specified company, Case Study 2 (section 5.2) will
describe situation in six unspecified companies also
using monthly data. We will conclude the article by
describing dynamic control charts together with prac-
tical examples (Case Study 3 and 4 in sections 5.3
and 5.4, respectively).

Prediction models of corporate financial prob-
lems constitute a way to evaluate health of a com-
pany using aggregated number (index) which attempts
to include all the financial analysis components, i.e.,
profitability, liquidity, indebtedness, and capital struc-
ture with each having its own weight. The weights,
based on empirical research, represent components’
importance in the financial health. Many models use
them for predicting financial problems, e.g., Beaver’s
test, Edmister’s analysis, Altman’s test, Tamar’s risk
index, ZCR coefficient, Lis’ index, Taffler’s index,
Springate-Gordon’s index, Fulmer’s index, IN 95 in-
dex, and IN index in a form of numerical intervals.

We describe some of the most widely-used models in
the following part [1, 2].

Altman’s Z-score was proposed in 1968 as a prog-
nostic index for solvency based on discriminant analy-
sis of 60 companies listed on the NYSE at the
time. The aim of the article is to introduce a tool
for bankruptcy prediction or more precisely future
liquidity problems [2].

2 Z-score and Indices

2.1 General Z-score and Indices
Altman’s Z-Score is based on discriminant analysis
principle. General notation of a discriminant function
is [2]:

Z = a1X1 + a2X2 + a3X3

+a4X4 + a5X5 + a6X6,
(1)

where ai is a discriminant coefficient, i =
1, 2, 3, . . . , 6, and Xi is a discriminant variable, i =
1, 2, 3, . . . , 6. The latter is identical for all Z-Score
variations [2].

x1 =
working capital

total assets
(2)

x2 =
revenue after tax + retained earnings

total assets
(3)
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x3 =
EBIT

total assets
(4)

x4 =
market share value

total debts
(5)

x5 =
returns

total assets
(6)

x6 =
undertakings after deadline

returns
. (7)

2.2 Z-Score Model for Joint-Stock Compa-
nies

Z-Score model for joint-stock companies is the orig-
inal Altman’s Z-Score model tested and constructed
for the U.S. companies. However, parameters for
Czech companies differ significantly from American
ones and model’s informative value is therefore very
low. We will denote Z-model for joint-stock compa-
nies as Z1-Score [1]. It is defined as [2]:

Z1 = 1.2X1 + 1.4X2 + 3.3X3

+ 0.6X4 + 1.0X5 + 0.0X6. (8)

X6 is equal to zero, and the formula is thus simplified
to:

Z1 = 1.2X1 + 1.4X2 + 3.3X3

+ 0.6X4 + 1.0X5. (9)

Companies belong to the one of the following in-
tervals according to their Z1-Score:

◦ Z1 > 2.99 → Safe Zone: financially strong,

◦ Z1 ∈ ⟨1.81; 2.98⟩ → Grey Zone: small financial
problems,

◦ Z1 < 1.80 → Distress Zone: serious financial
problems.

Healthy companies in good condition belong to
the Safe Zone while those in the Distress Zone face
serious challenges and bankruptcy risk. Grey Zone
companies have problems but it is hard to determine
if the situation will get better or not [3].

Figure 1: Altman’s Index for Joint-Stock Companies
in the Shewhart’s Concept [Own work]

2.3 Z-Score for Czech Economy
Insolvency is very important in the Czech corporate
ecosystem. X6 was thus added to the original Z1-
Score model whose disadvantage is a small number
of bankrupted companies in the sample size on which
it can be tested. Z-Score model tailored for Czech
economy will be denoted as Z1 CZ [2]. It is of the
following form [2]:

Z1 CZ = 1.2X1 + 1.4X2 + 3.3X3

+ 0.6X4 + 1.0X5 + 1.0X6. (10)

Z1 CZ’s classification intervals are identical to Z1.

2.4 Z-Score Model for Other “Non-Joint-
Stock” Companies

Criticism of the Z1-Score model for non-joint-stock
companies appeared after 1968. Its modification was
later based on changes in the X4 index. Other coef-
ficients also changed together with the classification
criteria. The new model was published in 1983 and
will be denoted as Z2-Score [2]. It is of the form [2]:

Z2 = 0.717X1 + 0.847X2 + 3.107X3

+ 0.420X4 + 0.992X5 + 0.000X6. (11)

Discriminant coefficient of X6 is equal to zero
and the model is thus simplified to:

Z2 = 0.717X1 + 0.847X2 + 3.107X3

+ 0.420X4 + 0.992X5. (12)

Classification intervals were also modified:

◦ Z2 > 2.90 → Safe Zone,

◦ Z2 ∈ ⟨1.23; 2.90⟩ → Grey Zone,

◦ Z2 < 1.23 → Distress Zone.

Grey zone in Z2 is wider than in Z1 (see section 2.2).

2.5 Z-Score Model for Non-Manufacturing
Companies and Emerging Markets

The variation of the index published in 1995 does not
include X5 so that the influence of industries exhib-
ited by variables in X5 is minimized. All coefficients
for X1 to X4 were changed, and the model is useful
for industrial comparison with different kinds of as-
sets financing. It is denoted as Z3-Score [2]:

Z3 = 6.86X1 + 3.26X2 + 6.72X3 + 1.05X4. (13)

Its classification intervals are:
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◦ Z3 > 2.60 → Safe Zone,

◦ Z3 ∈ ⟨1.10; 2.60⟩ → Grey Zone,

◦ Z3 < 1.10 → Distress Zone.

Figure 2: Updated Model for Non-Manufacturing,
Trading and Emerging Companies in the Shewhart’s
concept [Own work]

According to Altman, it is good enough for pre-
diction and can successfully anticipate bankruptcy
two years before its appearance. Distant future result
are, however, statistically insignificant. More varia-
tions have been derived from the original Altman’s
model, for example Springate–Gordon’s and Fulmer’s
model (see sections 2.6 and 2.7).

2.6 Springate–Gordon’s Model
Based on the Altman’s model and tested on data from
40 companies, 19 proportional indices were initially
considered. Discriminant analysis chose four and the
model was defined as [6]:

S = 1.03X1 + 3.07X2 + 0.66X3 + 0.4X4, (14)

where

x1 =
net working capital

property
(15)

x2 =
EBIT

property
(16)

x3 =
EBT

short-term undertakings
(17)

x4 =
returns

property
. (18)

If S < 0.862, financial problems should be expected,
and the company is classified as “failed”.

2.7 Fulmer’s Model
The model is suitable for small companies. Originally,
40 indices were analyzed on data gained from 40 com-
panies, half of which were successful and the other

half failed. It is defined as [5]:

F = 5.528X1 + 0.212X2 + 0.073X3 + 1.270X4

+ 0.120X5 + 2.335X6 + 0.575X7 + 1.083X8

+ 0.894X9 − 6.075, (19)

where

x1 =
retained earnings

property
(20)

x2 =
returns

property
(21)

x3 =
EBT

capital
(22)

x4 =
cash flow
total debt

(23)

x5 =
total debt
property

(24)

x6 =
short-term undertakings

property
(25)

x7 = property (26)

x8 =
net working capital
total undertakings

(27)

x9 =
EBIT

cost interest
. (28)

In case F < 0, the corporation should expect financial
problems in the future.

3 Statistical Process Control: She-
whart’s Control Charts

Statistical process control is one way to effectively use
statistical methods for corporate financial flow man-
agement. Variability of financial flow must be re-
spected: if the same type of calculation is used, same
results will not be obtained – values from the Altman’s
model. Control charts consist of a center line (CL)
placed at a reference value, the upper control limit
(UCL) and the lower control limit (LCL), also called
action limits. UCL and LCL are boundaries of ran-
dom cause of process variability, and a decision rule
for process control. CL, UCL and LCL are plotted in
software, e.g., QC Expert. When the process is “in
control”, 99.73 % of sample data lies between UCL
and LCL [8].

Engineering limits are usually given by upper
specification limit (USL) and lower specification limit
(LSL) according to the Altman’s model. For the
above-mentioned examples, USL = 8 and LSL =
2.99. If the value is lower than 2.99, the company has
financial problems, if the value is higher than 8, there
is a financial surplus [3].
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Figure 3: Shewhart’s Control Chart [Own work]

W. A. Shewhart proposed the concept of basic
control charts, graphical aids to separate identifiable
causes from random causes in process variability.
Control chart construction has mathematical and sta-
tistical basis. Classic control charts belong to a class
of charts without memory: actual value does not in-
clude previous ones. It is suitable for identifying spo-
radic mistakes/deviations in the process, i.e., devia-
tions higher than 2σ [12].

To build a Shewhart’s Control Chart:

◦ Step 1: We first choose part of the process to be
analyzed and prepare data.

◦ Step 2: Based on data from Step 1, we calculate
a statistical model represented by sample mean
and sample standard deviation. We test statistical
conditions for Shewhart’s control chart use.

◦ Step 3: A control chart is constructed on the ba-
sis of parameters from Step 2, i.e., sample mean
and sample standard deviation. Center line, up-
per and lower control limits are plotted to the
chart.

◦ Step 4: Data from the selected process is plotted
to the constructed chart. We focus on “strange
cases” which signalize unexpected variations in
process behavior. A basic “strange case” is when
UCL or LCL crosses the line.

◦ Step 5: “Strange cases” are registered and their
root causes investigated. When found, precau-
tions can be devised and implemented [7, 9].

4 Other Types of Control Charts
4.1 CUSUM
CUSUM control charts are based on cumulative sums.
Introduced by Page in 1954, their main advantage
is very quick detection of relatively small process
mean shifts which is significantly quicker than in She-
whart’s control charts. Sequential sums of deviations
from µ0 are used for their construction. If µ0 is the

population mean target value and Xj sample mean,
a CUSUM control chart is constructed as:

Si =

i∑
j=1

(Xj − µ0) , (29)

plotting variables of the same type. The process is
called random walk [7].

4.2 CUSUM for Individual Values and Sam-
ples Means from Normally-Distributed
Data

Values of xi are independent, sampled from identical
normal distribution N

(
µ, σ2

)
with known population

mean and standard deviation σ. We assume logical
subgroups with the same volume n.

CUSUMCn for n = 1 (individual values) is then:

◦ on a base of ordinal scale:

Cn =

i∑
j=1

(xj − µ) , (30)

◦ on a base of normal distribution where µ = 0 and
σ = 1:

Uj =
(xj − µ)

σ
, (31)

Sn =

j∑
i=1

Ui. (32)

Cn is approximately identical to Sn, measured in units
of standard deviation σ. Equation for Cn can be writ-
ten recurrently:

C0 = 0 (33)
Cn = Cn−1 + (xn − µ) ; (34)

and identically for Sn:

S0 = 0 (35)
Sn = Sn−1 + Un (36)

Suppose the observed variable’s distribution
N
(
µ, σ2

)
changes to N

(
µ+ δ, σ2

)
for integer t (at

a certain moment). Population mean µ will then ex-
hibit a shift of δ starting at (m,Cm) which grows lin-
early with slope δ. The shifts can be more complex
but CUSUM control charts can detect it nevertheless
[7, 11].
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4.3 Process Capability
Process capability indices (PCIs) can be divided into
two groups: those measuring process’ potential ca-
pabilities, and those measuring its actual capabilities.
The former determine how capable a process is when
certain conditions are met - essentially, if mean of the
process’ natural variability is centered to the target of
engineered specifications. The latter do not require
a centered process to be accurate [5].

Process capability analysis assumes:

◦ the process is statistically under control (deter-
mined from the control chart),

◦ data is normally distributed (tested using his-
tograms and/or tests of normality, e.g., chi-
square test, Kolmogorov–Smirnov test, Shapiro–
Wilk test, etc.

The most frequently used PCIs are Cp and Cpk.
They measure processes potential and actual capabil-
ities to consistently produce non-defective products
within control limits. If either Cp ≥ 1.33 or Cpk ≥
1.33, the process is considered potentially/actually ca-
pable [7].

4.4 EWMA
EWMA (Exponentially-Weighted Moving Average)
dynamic control charts are used when the following
conditions are met:

◦ observations are not independent and positively
autocorrelated,

◦ mean is not constant and changes slowly.

A sudden change in mean will cause control limit
violation. These dynamic charts provide not only
information about the “in control” process but also
about its dynamic development. As we mentioned,
only data which is not independent with positive auto-
correlation can be considered. If the measured obser-
vations are influenced by previous ones, we can con-
clude they are dependent. A special case of such de-
pendence is a so-called autocorrelation of the first de-
gree when linear. If there is positive autocorrelation in
data, smaller values follow smaller values and higher
values follow higher values. Data tends to preserve
its original values. A process is unstable in case of
negative autocorrelation: higher values follow smaller
values and smaller values follow higher values [13].

Suppose that we measure values x1, x2, x3, . . .
for variable X in a process. We use one-step pre-
dictions to construct CL, UCL, and UCL for the con-
trol chart. The predictions are determined from x̂k =

xk−1+λek for k = 1, 2, 3, . . .where the initial predic-
tion value x̂0 is equal the target value of µ0. Parameter
λ (level of “forgetting”) is calculated by minimizing∑n

k=1 e
2
k, n is equal to the number of measured obser-

vations for a regulated variable and is recommended to
be greater than 50. If one-step prediction error values
of ek for optimal λ are not correlated and normally-
distributed, CLk, UCLk, and LCLk for the EWMA
dynamic control chart are calculated from the follow-
ing equations [7]:

CLk = x̂k−1, (37)
LCLk = x̂k−1 − σ̂pu1−α

2
, (38)

LCLk = x̂k−1 + σ̂pu1−α
2
, (39)

σ̂2p =
1

n− 1

n∑
k=1

e2k, (40)

where σ̂2p is ek’s standard deviation while values of ek
are determined for an optimal λ [5, 10].

5 Case Studies
The aim of this part is to analyze whether it is pos-
sible to use control charts for financial flow manage-
ment. Their limits can be calculated using Altman’s
index to determine if the company is in good finan-
cial standing. When process’ stability is corrupted, it
is necessary to look for a root cause of why the index
is low or high. Application of statistical process con-
trol methods can indicate changes in financial flows
before they become a serious threat.

5.1 Case Study 1: Calculating SPC for a Sin-
gle Company

Table 1: Financial data for Case Study 1 [Own work]

Rank Value Rank Value
1 3.578 11 4.280
2 3.953 12 3.577
3 4.288 13 3.855
4 4.191 14 3.605
5 3.129 15 3.700
6 3.039 16 3.415
7 3.525 17 3.535
8 4.595 18 3.455
9 3.915 19 3.210
10 3.757 20 3.355

The data in Tab. 1 consists of 20 values span-
ning two years from the balance sheet of an unspeci-
fied company. It was instated to the Altman’s model
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Figure 4: Test of Normality: Density Estimation (his-
togram) and Quantile Chart [Own work]

Figure 5: Control charts: x-individual (left) and R
(right) [Own work]

formula, CL, UCL, and LCL are listed in Tab. 2.
We subsequently constructed a special control chart
for individual xi; the most common value was in the
range from 3 to 4, i.e., the company has no serious
financial problems and is quite healthy.

The tolerance levels are LSL = 8 and USL =
2.99. MR is calculated from two neighboring values,
therefore n = 2 and d2 = 1.128, D3 = 0, D4 =
3.267, σ = 0.4177. We then use equations 29, 30,
and 31 for quantifying CL, UCL, and LCL for x-
individual control chart, and equations 37, 38 and 39
for CL, UCL, and LCL for control chart R (Fig. 5).

Table 2: Control limits calculations [Own work]

x-individual R

CL = 3.6978 CL = 0.3724

UCL = 4.6884 UCL = 1.2168

LCL = 2.7022 LCL = 0

We need to test data normality (Fig. 4), compar-
ing theoretical distribution shapes with actual ones for
our data, before we can begin constructing the con-
trol charts. Red and green distributions should be very
close for the data to be normally distributed, a prereq-
uisite obviously met in Fig. 4. The analysis therefore
proved data normality, and we can construct the con-
trol charts.

Table 3: Capability indices calculations [Own work]

capability index Cp Cp = 1.999

financial flow stability Cpk Cpk = 0.5730

Cp equals 1.999, i.e., the company is doing well

Figure 6: Test of Normality: Q–Q chart and circle plot
[Own work]

and is financially sound. Cpk, however, was calcu-
lated to be 0.5730 which means financial flows are not
under control. The x-individual control chart shows
declining tendency towards the −2σ boundary, a war-
ning before the control limit is crossed.

5.2 Case Study 2: Calculating SPC for
6 Companies

Source data in Tab. 4 originates from balance sheets
of six companies, observed monthly. We again instate
them into the Altman’s model; the results are listed
in Tab. 5. Tolerance limits: LSL = 8 and USL =
2.99, σ = 0.4177.

Table 4: Source data for six companies [Own work]

Rank X1 X2 X3 X4 X5 X6

1 3.255 3.215 3.426 3.129 3.217 3.511
2 3.436 3.888 3.366 3.273 4.036 3.327
3 3.012 4.164 4.326 3.792 3.430 3.600
4 3.292 3.576 3.686 3.235 3.601 3.673
5 3.155 4.347 3.081 4.221 3.262 3.769
6 3.705 4.214 3.427 3.466 3.424 3.188
7 3.330 3.407 3.334 3.126 3.541 3.527
8 3.235 4.742 3.766 3.759 3.433 3.383
9 3.201 3.993 3.430 3.910 3.633 3.396
10 3.980 3.836 3.580 3.394 2.453 3.204
11 4.118 3.519 3.495 3.945 3.243 3.191
12 3.486 4.482 3.336 3.644 3.573 3.741

Using equations 29, 30, and 31, we get
CL,UCL, and LCL for x-mean control chart, and
equations 37, 38 and 39 to quantify CL,UCL, and
LCL for control chart R. We need to test normal-
ity before constructing control charts by means of ex-
ploratory analysis, depicted in Fig. 6.

Q–Q graph for normally-distributed data without
outliers is line-shaped, for normally-distributed data
with outliers the line is deformed with ending points
outside the line. Circle plot provides visual evalua-
tion of data normality based on skewness and kurtosis.
A green circle (ellipse) is optimal for normal distribu-
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Figure 7: Control charts: x-mean (left) and R (right)
[Own work]

tion, the black represents source data. Both are iden-
tical in case of normal distribution. The exploratory
data analysis therefore proved normally-distributed
data. We can now construct the control charts x-mean
and R (Fig. 7).

Table 5: Control limits calculations [Own work]

x-mean R

CL = 3.5568 CL = 0.9596

UCL = 4.0277 UCL = 1.9231

Table 6: Calculations of capability indices [Own
work]

Capability index Cp Cp = 6.007

Stability of financial flow Cpk Cpk = 1.3592

Cp equals 6.007, the companies were doing well
during the observed period and are financially sound.
Cpk is equal to 1.3592: financial flows are under con-
trol with no financial problems based on the sample
data. Variability of results among the six companies
lie within UCL and LCL control limits, i.e., process
variability does not cross the control lines.

5.3 Case Study 3: CUSUM
◦ µ0 = 10, n = 1, σ = 1, 0,

◦ We would like to detect a shift 1.0: σ =
1.0 (1.0) = 1.0, (d = 1, 0),

◦ Process mean is out of control: µ1 = 10 + 1 =
11,

◦ K = d
2 = 1

2 and H = 5, σ = 5 (recommended),

◦ Equations for C+
i and Ci are:

C+
i = max

⌊
0, xi − 10.5 + C+

i+1

⌋
C−
i =

[
0, 10.5− xi + C−

i−1

]

Figure 8: CUSUM control chart for case study 3 [Own
work]

Figure 9: Shewhart’s control chart [Own work]

The CUSUM chart (Fig. 8) shows the process is
out of control. In the following step, a root cause
(causes) should be looked for, precaution(s) imple-
mented and CUSUM control chart plotted again. If
the process was adjusted, it could be useful to esti-
mate its mean caused by the shift.

Figures 9 and 10 graphically compare CUSUM
and Shewhart’s control charts.

The example practically demonstrates sensitivity
of the CUSUM control chart compared with the She-
whart’s control chart for sample means. It does not de-
tect deviations (Fig. 9) in lower values while CUSUM

Figure 10: CUSUM control chart [Own work]
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Figure 11: Lineplot [Own work]

control chart detects process mean deviation around
subgroup 20 (Fig. 10). Shewhart’s control chart also
does not detect the shift in upper values (around sub-
group 56) but only the big shift around subgroup 70.

5.4 Case Study 4: EWMA
The financial data for a company are provided (mil-
lions of CZK) in Tab. 7. The initial value of x = 5.00.

Table 7: Source data for EWMA control chart con-
struction [Own work]

k xk k xk k xk k xk
1 5.01 16 4.84 31 4.77 46 4.44
2 5.11 17 4.77 32 4.60 47 4.53
3 5.04 18 4.78 33 4.51 48 4.53
4 5.12 19 4.82 34 4.58 49 4.57
5 4.94 20 4.78 35 4.67 50 4.34
6 5.01 21 4.80 36 4.51
7 5.11 22 4.84 37 4.57
8 5.18 23 4.78 38 4.56
9 5.04 24 4.82 39 4.57
10 5.18 25 4.88 40 4.60
11 4.85 26 4.78 41 4.65
12 4.99 27 4.80 42 4.67
13 5.05 28 4.81 43 4.50
14 5.38 29 4.88 44 4.50
15 4.97 30 4.75 45 4.44

Fig. 11 shows values to be declining, i.e., a con-
stant process mean is not present. Next, we analyze
if there exists an autocorrelation of the first degree
by constructing a correlation chart between xk and
xk+1 for k = 1, 2, 3, . . . , 49. The result is depicted
in Fig. 12.

The scatterplot is ellipse-shaped and the ellipse’s
main axis forms an acute angle with the x axis. Based
on this observation, we can conclude there is a sig-
nificant first-degree positive autocorrelation between
xk and xk+1. Exact coefficient of autocorrelation
equals 0.850. i.e., strong, statistically-significant pos-
itive autocorrelation. We will construct the EWMA

Figure 12: Correlation chart between xk and xk+1

(scatterplot) [Own work]

Table 8: S(λ) values [Own work]

λ S (λ) λ S (λ)

0.4 0.663138 0.47 0.658893
0.5 0.659108 0.48 0.658852
0.6 0.665795 0.49 0.658926

dynamic control chart and compute predicted values
of x̂k for empirically-selected values of λ in interval
⟨0; 1⟩. Starting value was set to µ0 = 5.00. We then
determine the value of S (λ) =

∑n
k=1 e

2
k (the sum

of error squares) for selected λ. The calculation for
λ = 0.48, which was found to be optimal, is shown
in Tab. 8. S (λ) is parabolic with one extreme (mini-
mum).

Tab. 8 shows λ parameter found in the first and
the third column, and S (λ) in the second and the
fourth column. The values of S (λ) for 0.4, 0.5, and
0.6 are given in the first two columns. The function’s
minimum is between 0.4 and 0.5; we set λ equal to
0.47, 0.48 and 0.49, repeated the process, and found
S (λ) minimum equals 0.48. The EWMA control
chart is depicted in Fig. 13 where LCL and UCL are
plotted as full black lines, and CL as a dashed line.
Inputs of the controlled attribute are represented by
dots.

The process is under control with all observations
inside the control band except for sample 14 which
may have been caused by process instability or inac-
curate measurement.
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Figure 13: The EWMA control chart [Own work]

6 Conclusion
The article dealt with control charts applications in
financial data. This kind of data is very sensitive
to mean shifting, strong autocorrelation also appears
very often. We therefore focused on CUSUM and
EWMA dynamic control charts. Versatility of control
charts not only in manufacturing but also in managing
financial stability of cash flows throughout the paper
was highlighted. A refined identification of the type of
intervention affecting the process will allow users to
effectively track sources of out-of-control situations,
an important step in eliminating special causes of vari-
ation.

Autocorrelated observations mainly arise under
automated data collection schemes, typically con-
trolled by software which can be upgraded to handle
SPC functions. Under such integrated scheme, use-
fulness of the proposed procedure will be optimized.
We would recommend a properly-designed time se-
ries control charts as control charts for individual mea-
surements in wide range of applications. These are al-
most perfectly non-parametric (distribution-free) pro-
cedures.

Traditional statistical process control (SPC)
schemes, such as Shewhart’s and CUSUM control
charts assume data collected from processes to be in-
dependent. However, the assumption has been chal-
lenged as it has been found data is serially corre-
lated in many practical situations. Performance of
traditional control charts deteriorates significantly un-
der autocorrelation, and monitoring of forecasted er-
rors after appropriate time series model has been fit-
ted to a process has been proposed to compensate.
The method is intuitive as autocorrelation can be ac-
counted for by the underlying time series model while
the residual component captures process’ independent
random errors. Traditional SPC schemes can be ap-
plied to monitor residuals.

Subsequent work on this problem can be broadly
classified into two themes: time series models based
and model-free. For the former, three general ap-
proaches have been proposed: those which moni-
tor residuals, those based on direct observations, and

those based on new statistics. Their brief account is
presented in this chapter.

The time series model-based approach is easy to
understand and effective in some situations. However,
it requires identifying appropriate time series model
from a set of initial in-control data. This may not be
easy to establish in practice and may be too compli-
cated to practicing engineers. Hence, the model-free
approach has recently attracted much attention.

We are of the opinion SPC control charts provide
an alternative to traditional instruments of financial
control. We attempted to prove it in this article where
we have demonstrated how SPC can be effectively im-
plemented to corporate financial management, and the
different types of control charts which exhibit varying
sensitivity to process mean shifts. Specifically, She-
whart’s and CUSUM control charts were compared,
and it was concluded the latter is suitable for processes
in which small mean shifts need to be detected early
on. Possible future expansion of our work is applica-
tion of SPC into other areas where data-driven real-
time statistical control is warranted.
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